46 research outputs found

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Analysis of Phosphorylation Pathways of Antiherpesvirus Nucleosides by Varicella-Zoster Virus-Specific Enzymes

    Get PDF
    Copyright © American Society for Microbiology, Antimicrobial Agents and Chemotherapy, volume 40, 920-923, 1996 publisherThe inhibitory activities of acyclovir (ACV), 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU), ganciclovir (GCV), 9-(2-deoxy-2-hydroxymethyl-beta-D-erythro-oxetanosyl)guanine (OXT-G), and (+)-9-[(1R,2R,3S)-2,3-bis(hydroxymethyl)Cyclobutyl]guanine (cOXT-G) on the replication of wild-type and thymidine kinase (TK)-negative strains of herpes simplex virus types 1 and 2 and varicella-zoster virus (VZV) and the wild-type strain of human cytomegalovirus were tested to clarity whether the phosphorylation of these compounds is catalyzed by viral TK or other enzymes. ACV and BV-araU had little effect on the replication of TK-negative virus strains. On the other hand, GCV, OXT-G, and cOXT-G inhibited the replication of TK-negative VZV at concentrations 10 times higher than those at which they inhibited wild-type VZV, indicating that a kinase other than TK phosphorylates GCV and OXT-G in VZV-infected cells. GCV phosphorylation activity was not detected in VZV-infected cell lysates; therefore, this activity was evaluated in COS 1 cells expressing viral TK and viral protein kinase (PK). The COS 1 cells expressing VZV TK were shown to be susceptible to all compounds tested. In contrast, VZV Pk-expressing COS 1 cells were susceptible to only GCV, OXT-G, and cOXT-G. These results suggest that VZV PK phosphorylates some nucleoside analogs, for example, GCV, OXT-G, and cOXT-G. This phosphorylation pathway may be important in the anti-VZV activities of some nucleoside analogs

    The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells

    Get PDF
    American Society for Biochemistry and Molecular Biology, Katsuki, Ohtani ; Yasuhiko, Suzuki ; Souji, Eda ; Takao, Kawai ; Tetsuo, Kase ; Hiroyuki, Keshi ; Yoshinori, Sakai ; Atsushi, Fukuoh ; Takashi, Sakamoto ; Hiroyuki, Itabe ; Tatsuo, Suzutani ; Masahiro, Ogasawara ; Itsuro, Yoshida ; Nobutaka, Wakamiya, Journal of Biological Chemistry, 276(47), 2001, 44222-44228. authorCollectins are a family of C-type lectins that have collagen-like sequences and carbohydrate recognition domains (CRD). They are involved in host defense through their ability to bind to carbohydrate antigens of microorganisms. The scavenger receptors type A and MARCO are classical type scavenger receptors that have internal collagen-like domains. Here we describe a new scavenger receptor that is a membrane-type collectin from placenta (collectin placenta 1 (CL-P1)), which has a typical collectin collagen-like domain and a CRD. The cDNA has an insert of about 2.2 kilobases coding for a protein containing 742 amino acid residues. The deduced amino acid sequence shows that CL-P1 is a type II membrane protein, has a coiled-coil region, a collagen-like domain, and a CRD. It resembles type A scavenger receptors because the scavenger receptor cysteine-rich domain is replaced by a CRD. Northern analyses, reverse transcription-polymerase chain reaction, and immunohistochemistry show that CL-P1 is expressed in vascular endothelial cells but not in macrophages. By immunoblotting and flow cytometry CL-P1 appears to be a membrane glycoprotein of about 140 kDa in human umbilical vein or arterial endothelial cells, placental membrane extracts, and CL-P1 transfected Chinese hamster ovary cells. We found that CL-P1 can bind and phagocytose not only bacteria (Escherichia coli and Staphylococcus aureus) but also yeast (Saccharomyces cerevisiae). Furthermore, it reacts with oxidized low density lipoprotein (OxLDL) but not with acetylated LDL (AcLDL). These binding activities are inhibited by polyanionic ligands (polyinosinic acid, polyguanylic acid, dextran sulfate) and OxLDL but not by polycationic ligands (polyadenylic acid or polycytidylic acid), LDL, or AcLDL. These results indicate that CL-P1 might play important roles in host defenses that are different from those of soluble collectins in innate immunity
    corecore